

Q/V/W Band Study

Jennifer Pinder Glenn Feldhake NAPEX XXII June 3rd, 1999

Tasks

- ☐ Current Status of QVW Band Propagation Measurements and Modeling
- ☐ Propagation Measurements
 System Design Requirements
- ☐ Define Additional Modeling
- □ NGSO vs. GSO Measurements

Introduction

- Literature search of Q/V/W band systems and experiments
- Atmospheric effects predictions and the validation in bands above 35 GHz
- Specification of ground and space segments for a atmospheric measurement campaign

Why Collect Data at QVW Bands

- ◆ FCC filings are already piling up for these bands
- Larger bandwidths will be possible at these frequencies
- Frequency Scaling Models are not good enough
 - * sometimes it works well, sometimes it doesn't
 - * works for small frequency differences, but fails for large differences due to size of atmospheric attenuators
 - * Models are mostly empirical

Propagation Considerations

Propagation Impairments

- * Sources
- * Impairments
- * Other Considerations

Propagation Models

- ★ For each effect
- * Validation

♦ Experiments

- * ITALSAT
- * STENTOR

Sources of Propagation Impairments

- Atmospheric Sources of Impairments
 - * Precipitation
 - → Rain, Snow, Sleet, and Hail
 - * Suspended Water
 - → Hydrosols, Ice, Fog, and Melting Layer
 - * Gaseous Constituents
 - → Water Vapor and Oxygen
 - * Refractive Index
 - → Turbulence, Multipath, and Ducting
- Non Atmospheric Sources of Impairments
 - * Wet Antenna, Radome, and Feed
 - * Dust, Sand, and Ash
 - * Bugs (W-Band)
 - * Topography (Diversity & Site Planning)
 - * Aerosols

Impacts to Signals

Signal Degradations

- * Attenuation
- * Depolarization
- * Dispersion
- * Scintillation

Other Considerations

- **★** Dynamics
- * Combined Effects (Validation at higher frequencies)
- ★ Particle Sizes and Shapes
- ★ Availability/Margin
- **★ Multiple Site Operation**

Model Validation Overview

- ♦ Earth-Space Propagation Models Have Not Been Widely Validated at Frequencies Above about 30 GHz.
- ◆ Small amount of Validation Available (ITALSAT) for Frequencies up to 49.5 GHz
- Best Approach Use Models Heavily Based in Theory Especially for Frequency Dependent Terms

Rain Attenuation Modeling

Attenuation

- ★ Several Models in Wide Use
 - → DAH Empirical; will be new ITU-R Model in September
 - → ExCell Theoretical, based on radar cross sections of rain cells
 - → ITU-R Empirical; performs best in temperate, mid-latitudes
 - → Global & Two Component Semi empirical; each will work great in some locations, but fall apart in others
- * At Least 10 Other Models Also Available
- ★ While ACTS and ITALSAT data indicate models do not experience any dramatic degradation in performance up to 50 GHz,very little data exists for frequencies above 35GHz
 - ◆ ACTS is below Q/V/W Bands
 - → ITALSAT measurements in temperate mid latitudes only
- Rain Rate Maps: Several Available
 - * Crane ITU-R (Old Rec 838-1) ITU-R (New Rec 838-2)

ITU-R Rain Rate Maps

15 old rain zones are replaced by 28,920 new rain Zones

Based on 15 years of global data compiled every 3 hours by European Center for Medium range Weather Forecast (ECMWF)

Complete distributions of rain rate are available globally over a 1.5° grid with a 2-D interpolation routine

RMS Error of <u>rain rate</u> distribution reduced from ~35% to ~25%

Before

 Greatest Improvement is in the Tropics

After

Severity of Rain at Q/V/W Bands

Theoretical Prediction:

- **★** Standard α/β Model
- * Attenuation increases ~2-2.5 times between 33 and 110 GHz
- Other Particles (e.g. hail, sleet, snow) will attenuate and depolarize differently
- As wavelengths approach the size of these particles, sizes, shapes, and ice to water ratio become more important

Rain Depolarization Modeling

◆ Chu Semi-Empirical Model; Validated to ~ 30 GHz

$$XPD = 11.5 + 20 \cdot \log(f) - 20 \cdot \log(A) - 40 \cdot \log(\cos(\theta))$$

$$-10 \cdot \log \left[\frac{1}{2} \cdot \left(1 - 0.978 \cdot \cos(4\tau) \right) \right] - 0.075 \cdot A \cdot \cos^2(\theta) \cdot \cos(2\tau)$$

◆ ITU-R Model; Empirical - Validated with ITALSAT to ~
 55 GHz

$$XPD = 30 \cdot \log(f) - 22.6 \cdot \log(A) - 10 \cdot \log[1 - 0.484(1 + \cos 4\tau)]$$
$$-40 \cdot \log(\cos(\theta)) + 0.0052 \cdot \sigma^{2}$$

- ♦ Using either model, XPD improves with frequency for a given attenuation level
- Limited when wavelength approximates particle size

Frozen Precipitation

♦ Hail

- **★** Impact:
 - → Attenuates if coated by water
 - → Depolarizes if not spherical

Snow

- ★ Impact: Attenuation & Depolarization
 - → Depole greatest at low elevation angles
- ★ Model: Transmission Matrix
 - → 43 Different kinds of snow
 - + Parameters of interest
 - Shapes (plates or needles)
 - * Size distribution
 - + Ratio of ice, water, and air
 - → Many flakes are aggregates

Dendritic Plate

Plate

Needle

Suspended Liquid Particles

Liquid Water (Clouds)

- * Impact: Attenuation increases monotonically with frequency and linearly with water content
- **★** Models:
 - ★ Liebe MPM 93; Theoretical - very accurate assuming the structure of the cloud is known
 - ◆ ITU-R; Semi-Empirical -"watered down" version of MPM93

Fog (Low Density Liquid)

★ Same models apply

Suspended Frozen Particles

Ice (Cirrus)

- Impact: Depolarization;
 some attenuation
 possible at W Band
- * Models:
 - → ITU-R; Empirical statistically adds extra ice depolarization term onto rain depolarization distribution
 - → Frequency Scaling Factors; Based on ITALSAT

$$XPD_2 = XPD_1 - 20 \cdot \log \left(\frac{f_2}{f_1}\right)$$

 ◆ Scale factor may not be valid beyond ~50 GHz

Specific Attenuation of Suspended Ice

Assumes

- Using Guissard Model
- •T=0 °C
- •Theoretically valid 3≤ *f* ≤90 GHz

Suspended Melting Particles

* Impact

- → Most impact per particle, but
- → Melting layer is very thin (≤ 0.5 km)

* Models

- → Dissanayake (1997); Empirical
 - not validated beyond 30 GHz
 - specific attenuation at Q/V/W ~ 20 dB/km
- ★ Kharadli (1988); Theoretical model valid to 1000 GHz,
 - never validated with real data
 - specific attenuation at Q/V/W 1-10 dB/km

Gaseous Components

Impact: Attenuation

- ★ Q/V/W Band dominated by oxygen absorption lines in the 57 to 63 GHz region.
- Specific attenuation of water vapor increases by almost an order of magnitude

Models:

- ★ Liebe MPM 93; Theoretical model works well if path profiles are understood.
- ★ ITU-R; Empirical fit to MPM

Dust, Ash, & Sand

- ◆ ITU-R Rec. 618-5; "Very little is known about the effects of sand and dust storms on radio signals on slant-paths. Available data indicate that at frequencies <u>below 30 GHz</u>, high particle concentrations and/or high moisture contents are required to produce significant propagation effects."
- Some Data in Mid-east indicates 44 GHz can be attenuated significantly by sand storms
- NM ACTS Site Observations
 - ★ Sand Storms Occur Regularly Every Spring & Fall
 - ★ Summer 1996 Had a Large Brush Fire with Thick Smoke Along the Link for About Two Weeks
 - * No Noticeable Effects Appeared in the Propagation Data

Topography/Microclimatology

- Important consideration for site planning
 - * Mountains, rivers, lakes will "steer" weather patterns
 - Weather fronts may show preferred orientations when passing through an area
- Local microclimatology may also be used to benefit site diversity by reducing required site separations or number of sites

Mean Annual Surface Water Vapor Density (g/m³)

Other Considerations

Wet Surface Effects

- ★ Impact: Attenuation and depolarization
- **★** Models:
 - ◆ Crane, Acosta, and Horan/Atle
 - → Effects will very widely depending on orientation of the antenna and hydrophobicity of the reflector and horn surfaces

Bugs

- Impact: Some indications of potential depolarization at 80+ GHz
 - → Varies with species (i.e. shape and size)
 - → internal water content also an issue
- **★** Models: (?)

ITALSAT

Caratteristiche principali del salelliti

- 9/91 Began propagation experimen
- ♦ 2/97 Station-keeping relaxed
- Fours years of fuel remaining
- Budget issues
 - * Most sites have concluded measurements due to lack of funds
 - + Italians continue to collect data
 - ★ Italians Seeking Collaboration
 - → Need operational support
 - → Investigating feasibility of moving ITALSAT F1 over Atlantic (15° W)

→ If no interest in funding future ITALSAT experiment, may consider using fuel for one year of station-keeping

ITALSAT Results

- Attenuation & Depolarization
 - * Measurements in Italy, Nethelands, Norway, Spain, UK
 - * All sites have slightly different terminals
- ◆ Additional Measurements of 39.6±0.5 GHz Tones
- Most V-Band Data Validated by Scaling 18.7 GHz Beacon

	18.7 to 39.6	18.7 to 49.5
Measured 1994	2.89	3.78
Measured 1995	3.10	4.01
Measured 1996	2.97	4.20
Measured 1997	3.43	5.00
Average(1994-1997)	3.10	4.25
ITU-R Prediction	3.35	4.47

Frequency Scaling at Spino d'Adda

Summary of Propagation Issues

- Most important atmospheric effects are system dependent.
- Atmospheric effects considered "secondary" at Ka band and below will increase in significance
- Existing Ka band validated models appear to work without significant degradations in performance up to 50 GHz, but they were tested with limited data sets primarily from temperate climate regions
- Empirical scaling of Ka band data may start breaking down beyond 50 GHz
- Theoretical models may provide solutions but better understanding of microphysical properties of the atmosphere is required
- Little validation data available; all comes from temperate, mid-latitude locations.

STENTOR

500

- **◆ EXPRESS**
- Space Segment
- **◆ Ground Segment**

STENTOR-EXPRESS

Experiment Possibilities

- * Amplitude Measurements at 20.7 & 41.4GHz
- * Differential Amplitude Measurements between 20.7 & 41.4GHz
- ★ Differential Phase Measurements between 20.7 & 41.4GHz
- * Atmospheric Noise temperature for marginal C/N systems

Special Interest

- ★ Amplitude Measurements at 41.4GHz
 - → very little data exists
 - → Tropical data at Ka and Q bands.

STENTOR-Space Segment

Description: Two Parabolic Reflectors with offset feeds transmitting beacons at 20.7GHz and 41.4GHz

Waveform:

Coherent beacons at 20.7 & 41.4 GHz RHCP

Satellite Antenna Parameters (Guyanese):

Satellite Antenna Parameters	41.4 GHz	20.7 GHz
Feeder Loss	4.8 dB	7.1 dB
Antenna Input Power	21.7 dBW	18.4 dB
Maxiumum Transmit Ant Gain	34.8 dBi	36.2 dB
Maximum EIRP	26.5 dBW	24.6 dB
Antenna Diameter*	20 cm	45 cm
Antenna Focal Length*	20 cm	36 cm

STENTOR 41.4 GHz Spot Beam

STENTOR 20.7 GHz Spot Beam

STENTOR-Ground Segment

Description: Modified ACTS Reflector with offset feed receiving beacons at 20.7GHz and 41.4GHz

- Determine Location (Florida, Puerto Rico)
- ◆ Determine Link Budget for each possible location
- Determine Antenna Hardware Modifications
- Determine Software Modifications

STENTOR-Ground Segment Location

Possible Sites	Elevation Angle	Azimuth
Miami , FL	10.1	-80.6
Key Largo, FL	10.0	-81.0
Keywest, FL	8.8	-81.8
San Jaun, PR	25.0	-77.5

STENTOR-Ground Segment Preliminary Power Budget

Parameter	Units	S. Florida (Gs=0-10dB)		Puerto Rico (U.S)(Gs=20-25dB)
Frequency	GHz	41.4	41.4	41.4	41.4
Transmit Antenna Gain	dBi	5	10	20	25
EIRP	dBW	-3.3	1.7	11.7	16.7
Modulation Loss	dB	0	0	0	0
Pointing Loss	dB	0.1	0.1	0.1	0.1
Path Loss	dB	217.0	217.0	216.6	216.6
Clear Sky Attenuation	dB	4.0	4.0	1.7	1.7
Fading allowance	dB	0	0	0	0
Antenna Efficiency	%	55	55	55	55
Antenna Gain(1.22m)	dB	52.5	52.5	52.5	52.5
Antenna Temperature	K	100	100	100	100
Polarization mismatch	dB	-3.0	-3.0	-3.0	-3.0
Net Losses	dB	166.2	166.2	163.6	163.6
Power Available	dBW	-172.5	-167.5	-154.9	-149.9
Power from ACTS at 2	0.185 GHz	in Blacksburg	-	-147.3	dBW

STENTOR-Ground Segment Preliminary Power Budget

Parameter	Units	S. Florida (Gs=10-15dB)		Puerto Rico(Gs=20-25dB)	
Frequency	GHz	20.7	20.7	20.7	20.7
Transmit Antenna Gain	dBi	10	20	25	28
EIRP	dBW	-1.6	8.4	13.4	16.4
Modulation Loss	dB	0	O	0	0
Pointing Loss	dB	0.1	0.1	0.1	0.1
Path Loss	dB	211.0	211.0	210.6	210.6
Clear Sky Attenuation	dB	3.7	3.7	1.6	1.6
Fading allowance	dB	0	0	0	O
Antenna Efficiency	%	5 5	55	55	55
Antenna Gain(1.22m)	dB	46.6	46.6	46.6	46.6
Antenna Temperature	K	100	100	100	100
Polarization mismatch	dB	-3.0	-3.0	-3.0	-3.0
Net Losses	dB	165.9	165.9	163.5	163.5
Power Available	dBW	-170.5	-160.5	-153.1	-150.1
Power from ACTS at 20.185 GHz in Blacksburg			-147.3	dBW	

STENTOR-Ground Segment Receiver Modifications (Future)

Determine Necessary Modifications

- * Hardware Modifications(LNA, Frequency Multiplexiers, DRX, Dish, etc.) TBD
- * Antenna Noise -TBD
- ★ Phase Difference Measurements -TBD